Crystal bases , finite complete rewriting systems , and

نویسندگان

  • Alan J. Cain
  • Robert D. Gray
  • António Malheiro
چکیده

This paper constructs presentations via finite complete rewriting systems for Plactic monoids of types An, Bn, Cn, Dn, and G2, using a unified proof strategy that depends on Kashiwara’s crystal bases and analogies of Young tableaux, and on Lecouvey’s presentations for these monoids. As corollaries, we deduce that Plactic monoids of these types have finite derivation type and satisfy the homological finiteness properties left and right FP∞. These rewriting systems are then applied to show that Plactic monoids of these types are biautomatic.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Crystal bases, finite complete rewriting systems, and biautomatic structures for Plactic monoids of types $A_n$, $B_n$, $C_n$, $D_n$, and $G_2$

This paper constructs presentations via finite complete rewriting systems for Plactic monoids of types An, Bn, Cn, Dn, and G2, using a unified proof strategy that depends on Kashiwara’s crystal bases and analogies of Young tableaux, and on Lecouvey’s presentations for these monoids. As corollaries, we deduce that Plactic monoids of these types have finite derivation type and satisfy the homolog...

متن کامل

Noncommutative Gröbner Bases for the Commutator Ideal

Let I denote the commutator ideal in the free associative algebra on m variables over an arbitrary field. In this article we prove there are exactly m! finite Gröbner bases for I , and uncountably many infinite Gröbner bases for I with respect to total division orderings. In addition, for m = 3 we give a complete description of its universal Gröbner basis. Let A be a finite set and let K be a f...

متن کامل

Rewriting Systems and Geometric 3-Manifolds

The fundamental groups of most (conjecturally, all) closed 3manifolds with uniform geometries have finite complete rewriting systems. The fundamental groups of a large class of amalgams of circle bundles also have finite complete rewriting systems. The general case remains open.

متن کامل

Tame combings, almost convexity and rewriting systems for groups

A finite complete rewriting system for a group is a finite presentation which gives an algorithmic solution to the word problem. Finite complete rewriting systems have proven to be useful objects in geometric group theory, yet little is known about the geometry of groups admitting such rewriting systems. We show that a group G with a finite complete rewriting system admits a tame 1-combing; it ...

متن کامل

Rewriting Systems for Coxeter Groups

A finite complete rewriting system for a group is a finite presentation which gives a solution to the word problem and a regular language of normal forms for the group. In this paper it is shown that the fundamental group of an orientable closed surface of genus g has a finite complete rewriting system, using the usual generators a1, .., ag, b1, .., bg along with generators representing their i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014